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 “It is the history of computer software, and not of the computer itself, that is at 

the heart of the larger story of the great ‘computer revolution’ of the mid-to-late 20th 

century.”
1
 “The history of software is the history of how various communities of 

practitioners have put their portion of the world into the computer… translating their 

experience and understanding of the world into computational models… [which] reflect 

the histories of the communities that created them and cannot be understood without 

knowledge of those histories, which extend beyond computers and computing to 

encompass the full range of human activities.”
2
 These two quotes, the first by Nathan 

Ensmenger in his upcoming book, and the second, opening his piece on “What Makes the 

History of Software Hard” by the late Michael Mahoney, when taken together outline a 

specific approach to the history of computing: software is treated as central, not an 

afterthought, and social relationships, not technological artifacts, are fore-grounded. This 

program brings the History of Computing and of software more closely in line with 
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History of Technology and with Science and Technology Studies, an agenda Mahoney 

famously put forward in 1988.
3
  

This paper originally began as an exploration into the origins of a computing 

technology and system of practice, known as “object-oriented programming” (OOP), and 

upon a suggestion by my advisor, Ron Kline, into its relation to the “software crisis” of 

the 1960s, I began with an examination of Mahoney’s 2002 paper on the software crisis, 

“Software, The Self-Programming Machine.”
4
 The work of Nathan Ensmenger at the 

University of Pennsylvania touches extensively on the software crisis, and his work 

builds on Mahoney’s foundations. Both Mahoney and Ensmenger cast the software crisis 

as a traditional struggle between management and software workers, with both new 

management technologies and new software technologies (software engineering, 

structured programming, object-oriented programming) devised as solutions, primarily 

pushed by management, to solve the perceived crisis. Yet, many proponents of object-

oriented programming are programmers, including computer science professors, who 

have hailed it for its technical advantages over previous methods, even claiming it to be a 

“revolution”
5
 and a “silver bullet” that could solve the software crisis.

6
 If object-oriented 
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programming originated solely out of managerial attempts to discipline software workers, 

how would one explain the enthusiasm of the programming community itself for it? 

Upon examination of the history of two important object-oriented languages, Smalltalk 

and C++, through the eyes of its creators, I find that the story is more complex: Smalltalk, 

the first object-oriented language, originated in a research environment and was more 

influenced by academic computer science. C++ also originated in a research environment 

but one more attuned to practical software industry concerns, resulting in a language that 

violated what some proponents believed to be core principles of object-orientation
7
 in 

favor of closer similarity to older structural and procedural programming, yet in spite of, 

but possibly precisely because of this, becoming the most widely used object-oriented 

programming language in the industry,
8
 thus making it the most likely OO language of 

choice for managers. 

No “revolution” is without resistance, however, and though it is now almost two 

decades since that revolution supposedly began, and object-orientation is supposedly 

everywhere, its full benefits, as touted by its most enthusiastic proponents, have hardly 

been realized. The controversy over C++’s technical merits as an object-oriented 

language, especially its lack of a feature known as “dynamic typing and binding” 

common to other object-oriented languages, reveals a persistent tension in the history of 
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software. The design of programming languages over time has tended to proceed in the 

direction of higher levels of abstraction, partly in an effort to manage the complexity seen 

to be at the root of the software crisis. Yet as seen in C++, alternate values, practicality 

and efficiency, are often invoked to justify departures from high level abstraction, giving 

programmers low level access to hardware. Bruce Webster, in his book, Pitfalls of 

Object-Oriented Development, implies that widespread use of C++ has actually hampered 

the spread of good object-oriented practice.
9
 A recurring theme in his book is that proper 

object-oriented design methodology cannot be imposed by the technology (the language) 

itself, but that the designer must first transform his/her way of thinking over to the new 

“paradigm.”
10
 I examine the controversy over dynamic typing and binding in light of the 

histories of Smalltalk and C++ as a possible counterexample to the thesis that 

management favors higher abstractions to manage complexity. 

Mahoney and Ensmenger’s Theses Considered 

The canonical story of the software crisis proceeds thus: the mid-to-late 1960s 

marked a period where increases in hardware capability appeared to lead to an increase in 

the complexity of computer programs. Programming had, very early on, been considered 

to be, in the words of John Backus, inventor of the high-level programming language 
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Fortran, a “black art,”
11
 in the sense that it was a craft, artisanal skill requiring intuition, 

creativity, rules of thumb and tinkering. This was especially apparent in the early days of 

programming on hardware with limited capabilities, so that whatever tricks could be done 

to wring the maximum performance out of a program or minimize the amount of memory 

used would be employed. Better hardware freed software programmers to construct more 

capable, and thus more complex, software systems, which quickly grew too large for any 

one programmer to handle. The complexities of managing large groups of programmers 

led to widely publicized failures: IBM’s OS/360 project cost the company half a billion 

dollars, and the Mariner I spacecraft veered off course and had to be destroyed due to a 

simple transcription error.
12
 With hardware costs decreasing, the cost of creating and 

maintaining software, and therefore of programming labor, soon became the largest 

source of expenditure on computing. This situation gradually became known in the 

computer industry as the “software crisis.” In response, Fred Brooks, the IBM 

programming manager who led the ill-fated OS/360 project, wrote the famous book, The 

Mythical Man-Month,
13
 in part to dispel the notion that simply adding programmers 

could help speed up development time–in his experience, the converse was true, as more 

people only increased the complexity of the management and coordination task. Another 

managerial response to this crisis was the movement to define programming as a 
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“software engineering” discipline, to make it less of a craft more routinized and 

scientific. 

The two historians who have written the most about the “software crisis” and the 

social and technological responses to it are Nathan Ensmenger, and the late Michael 

Mahoney. Mahoney has approached the topic from two angles, from the perspective of 

the quest for complete automation of programming, and from the perspective of software 

engineering. Mahoney lays out the history of software as a quest towards the Grail of the 

Automatic, Self-Programming computer,
14
 an idea that was theoretically possible from 

the beginning in Turing’s formulation of a universal finite state machine, which could 

replicate the functions of any machine through self-programming, limited only by 

memory. The development of symbolic assemblers, high-level programming languages 

and compilers (originally called “automatic programming”) and operating systems 

increasingly automated many of the repetitive and tedious lower level tasks of dealing 

with the machine, and introducing increasing layers of abstraction, allowing programmers 

to focus on questions of how best to design software, and make software design, “best 

suited to various domains of application.”
15
 The “software crisis,” generated two 

responses: one, to achieve full automation of programming, and two, to discipline the 

programmer, the former based on the Fordist assembly line, the later, the Taylorist 

“software factory.” Mahoney describes the development of assemblers, high-level 

languages, and operating systems mostly as moves towards automatic programming, but 

they were also equally technologies that disciplined programmers by introducing ideas of 

new “best practices.” Because software was, and still is, a “labor-intensive form of craft 
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production”,
16
 the solution seemed straightforward: industrialize. Mahoney relates a 

famous quote by M.D. McIlroy:  

We undoubtedly produce software by backward techniques. We 

undoubtedly get the short end of the stick in confrontations with hardware 

people because they are the industrialists and we are the crofters. Software 

production today appears in the scale of industrialization somewhere 

below the more backward construction industries. I […] would like to 

investigate the prospects for mass production techniques in software.
17
  

Software engineering would be likened to mechanical engineering, and the solution 

would be interchangeable parts and mass production. But industrialization meant social 

change as well as technological change, in that it disciplined and standardized the work 

of programmers. GE’s R.W. Bemer’s notion of the “software factory” provided a 

disciplined and regimented environment that would reduce costs:  

It appears that we have few specific environments (factory facilities) for 

the economical production of programs. I contend that the production 

costs are affected far more adversely by the absence of such an 

environment than by the absence of any tools in the environment… A 

factory supplies power, work space, shipping and receiving, labor 

distribution, and financial controls, etc. Thus a software factory should be 

a programming environment residing upon and controlled by a computer. 

Program construction, checkout and usage should be done entirely within 

this environment. Ideally it should be impossible to produce programs 

exterior to this environment…Economical products of high quality […] 

are not possible (in most instances) when one instructs the programmer in 

good practice and merely hopes that he will make his invisible product 

according to those rules and standards. This just does not happen under 

human supervision. A factory, however, has more than human 

supervision. It has measures and controls for productivity and quality.
18
 

Mahoney sees this need for managerial control over programmers as a form of 

Taylorism, in its emphasis on the “supervision and support of the programmer […] with 

management seeking to impose the ‘one best way’ over a worker still in control of the 
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shop floor.”
19
 Structured programming, a methodology of separating out different stages 

in the design process for different abstraction layers for software, was one such 

disciplining technology. Taylorism, as a management technology, was not the only model 

of industrialization, however. Many were attracted to the more explicitly technological 

approach of the assembly line. 

The evocation of the assembly line linked the software factory to a model 

of industrial production different from Taylor’s—how different is a 

complex historical and technical question—namely Ford’s system of mass 

production through automation. Ford did not have to concern himself 

about how to constrain workers to do things in “the one best way.” His 

production machines embodied that way of doing things; the worker had 

little to do with it. The same was true of the assembly line. 
20
 

Software technologies that implemented the idea of interchangeable parts included 

“‘mass-produced software components,’ modular programming, object-oriented 

programming, and reusable software.”
21
  

Such technologies have not removed the programmer from the equation, however, 

nor have they even succeeded in eliminating its craft aspects. “Thirty years after the first 

NATO Conference on Software Engineering, advocates of an industrial approach to 

software development still complain that the ‘vast majority of computer code is still 

handcrafted from raw programming languages by artisans using techniques they neither 

measure nor are able to repeat consistently.’”
22
 However, James Tomayko argues that 

“software engineering” can be legitimately seen as engineering not because of its basis on 
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underlying science but because its practitioners do engineering activities.
23
 If so, software 

engineering shares with other kinds of engineering the qualities that it is both an art and a 

science. The fact that there are now handbooks and other sources of quantified 

engineering knowledge that can be taught to new practitioners is a signal that software 

engineering is maturing as an engineering discipline. However, in all engineering 

disciplines, handbooks only capture knowledge acquired through successful art, and serve 

to enable average engineers to be useful by allowing them to apply engineering principles 

that others have created. The reason for the persistence of art in engineering is the result 

of the “creativity gap”
24
 that separates ideas from reality. Successful design of artifacts 

that can bridge the creativity gap require an intuitive “feel” for making the correct 

tradeoffs.
 25
 Indeed, Mahoney himself argues that software programming is more 

fruitfully seen not as “engineering” but as “architecture” because of that field’s emphasis 

on design. To some extent, people in the software industry corroborate this, in that 

“software architecture” is a term used to refer to systems design.
26
 Fred Brooks, who 

claimed that programming was like writing poetry, asserted in his 1987 article, “No 

Silver Bullet,” that software could never be fully industrialized because its biggest 

problems lay in design, not implementation, and because of its socially embedded nature: 
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to be successful, it must be compatible with the existing socio-technical context, yet also 

be able to grow and adapt to ever changing environments and user demands.
27
 

Ensmenger agrees with Mahoney that the history of software is the history of  its 

communities of practice,
 28
 or in other words, its programmers, although he acknowledges 

that the ambiguity of that term makes it more useful as a rhetorical device rather than an 

analytical category.
29
 Like Mahoney, he sees responses to the software crisis as 

essentially a problem of labor and management, but he goes further. The articulation of 

the crisis itself is to be seen as a discursive construct of management. The software crisis 

was widely understood by managers as a labor shortage. However, the real problem was 

not “so much a lack of programmers per se; […but] a shortage of experienced, capable 

developers.”
30
 He finds that early in the crisis, it was recognized that in fact there was an 

oversupply of unproductive programmers, and that “exceptional” programmers were 10 

times more productive than average ones, making the crisis about the shortage of 

“exceptional” programmers. However, the software community did not necessarily agree 

on what qualities made up the “exceptional” programmer.
31
 Mathematical training in 

formal logic and numerical analysis, the original criterion for qualification as a 

programmer, was found to be of limited use in the business applications driving the need 

for more programmers.
32
 The fluid boundaries of the programming workforce and the 

difficulty of agreeing on certification and training criteria became an obstacle to 
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professionalization.
33
 Programmers had a harder  time rising up to management than their 

colleagues in other engineering disciplines. However, the labor shortage worked in their 

favor, as the high demand meant for easy mobility for good programmers, driven to find 

jobs based more on job satisfaction than salary.  

Much of the literature on the software crisis is written from the perspective of 

management. From that perspective, the situation did indeed seem like a crisis as the 

majority of computer costs by the end of the 1960s were for software production and 

most of that cost was labor. Disciplining programmers (often by technically unproficient 

managers) thus became a major priority. Object-oriented programming, for instance, was 

seen by one adherent as a way to impose the traditional workplace relationships of 

manufacturing.  Taylorism was implicit in all the proposed solutions to the crisis.
34
 

Ensmengner and Aspray organize proposed “silver bullet” strategies to routinize, deskill, 

and control independent and recalcitrant programmers into three categories: procedural 

structures, professional structures, and technological structures.
35
 The hyped 

methodology of object-oriented programming (OOP) in the 1980s was merely the latest 

in a series of methodologies attempting to reduce the “black art of programming” to a 

modern industrial manufacturing process. Brad Cox, an OOP advocate and primary 

creator of the Objective-C programming language, disputed Brooks’ claim and asserted 

that OOP was the “silver bullet” to bring about the “industrial revolution” in software 

manufacture.
36
 Nevertheless, Ensmenger argues that despite all these efforts, managers’ 

efforts to completely routinize and de-skill programming tasks were unsuccessful; Philip 
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Kraft’s application of Harry Braverman’s deskilling thesis to software ignores what 

Tomayko has corroborated as the “creative and intellectually demanding” aspects of 

programming. Management claims for silver bullets reflect more ideals than reality, as 

even Cox acknowledges that the crisis has not been solved.
37
 

Mahoney and Ensmenger merely seem to differ on whether object-oriented 

programming was a Taylorist or Fordist technology of disciplining software workers. I 

lean towards Ensmenger’s interpretation, as my experiences as a software worker on 

Apple’s object-oriented Cocoa technologies suggest that OOP’s proponents argue that it 

is useful primarily to discipline programmers into making better design choices, altering 

their practices. But was object-oriented programming, as both Mahoney and Ensmenger 

claim, created as a technology for managers to control their programmers? A closer look 

at some of the actors’ accounts, both contemporary and retrospective, seem to indicate 

otherwise. For one, although Fred Brooks’ Mythical Man-Month was originally published 

in 1975, and the first NATO Conference on Software Engineering took place in 1968 and 

1969, the “silver bullet” debate between Brooks and Brad Cox took place between 1987 

and 1990. Of course, that this occurred almost two decades after the “software crisis” was 

first perceived to have begun, illustrates the continuing problems that the industry has 

with the complexity of software and the craft nature of its production. Nevertheless, by 

1990, object-oriented programming is not exactly new, although it is only around this 

time that it begins to gain widespread acceptance in the industry. What academic 

                                                 
37
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computer scientists consider the first fully object-oriented high-level language, Smalltalk, 

was developed mostly by Alan Kay in various forms at Xerox PARC between 1970 and 

1978.
38
 C++, probably the most widespread and popular object-oriented language, was 

developed in various forms by Bjarne Stroustrup at Bell Labs between 1979 and 1986.
39
 

Cox, developed his own language, Objective-C, in the early 1980s as well.  

Were these language designers responding to industrial managers when they 

invented these languages? Of the three, Cox seems to fit most closely to Ensmenger’s 

thesis. Cox argued in the pages of IEEE Software that object-oriented programming 

would initiate the “software industrial revolution,”
40
 a Kuhnian paradigm shift in the way 

software is produced, specifically echoing the sentiments of McIlroy. It was essentially 

the same argument as in his “There is a Silver Bullet”
41
 response to Brooks, published in 

Byte magazine in the same year, 1990. Despite his historical references to Kuhn, the 

development of interchangeable parts in American gun manufacture,
42
 and his persistent 

metaphor of industrial revolution, Cox did not believe that software production could be 

fully automated nor deskilled. In a subsection titled “Software Architecture,” he explains:  

It is easy to see how interchangeable parts could help in manufacturing. 

But manufacturing involves replicating a standard product, while 

programming does not. Programming is not an assembly-line business but 

a build-to-order one, more akin to plumbing than gun manufacturing. But 

the principles of standardization and interchangeability pioneered for 
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standard products apply directly to build to-order industries like plumbing. 

They enabled the markets of today where all manner of specialized 

problems can be solved by binding standardized components into new and 

larger assemblies.  

Mature industries like plumbing are less complex than ours, not because 

software is intrinsically more complicated, but because they and not we 

have solved their complexity, nonconformity, and changeability problems 

by using a producer/consumer hierarchy to distribute these problems 

across time and organizational space. The plumbing supply market lets 

plumbers solve only the complexities of a single level of the producer 

/consumer hierarchy without having to think about lower levels, for 

example, by reinventing pipes, faucets, thermostats, and water pumps 

from first principles.
43
 

Although Cox was explicitly responding to the perceived persistence of the 

software crisis, as a programmer he did not intend to propose a solution solely for the 

benefit of managers. In fact, Cox’s own identity was ambiguous: he has both founded his 

own company, Stepstone, and has spent considerable time at George Mason University as 

a professor of computer science and mathematical biology. Rhetorically, he couched his 

prescriptions as benefiting “users,” but more often “consumers”: 

Furthermore, the intangibility imperative concentrates power in the hands 

of those with the abstract reasoning skills to comprehend an intangible 

product: the producers. The consumers are left powerless, unable to 

contribute the financial and legal resources that are needed to drive deep-

seated cultural and technological changes. 

This drive to empower the consumer by making software as accessible and 

immediate as everyday tangible objects underlies the recent enthusiasm 

for direct manipulation (iconic) user interfaces, browsers, personal 

workstations, and other techniques for making software more tangible, 

less abstract, and more approachable by non programmers.
44
 

I use a separate term – software industrial revolution - to mean what 

"object- oriented" has always meant to me: transforming programming 

from a solitary cut-to-fit craft into an organizational enterprise like 

manufacturing. This means letting consumers at every level of an 

organization solve their own software problems just as home owners solve 

plumbing problems: by assembling their own solutions from a robust 
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commercial market in off-the-shelf subcomponents, which are in turn 

supplied by multiple lower level echelons of producers.
45
  

This supports Ensmenger’s argument in the sense that we can see how, in Cox’s 

market oriented rhetoric, “consumers” of software are likely to be corporations. Indeed, 

he almost reveals this when he says that it is the consumers who “pay our salaries.” On 

the other hand, his reference to graphical user interfaces making computers more 

approachable to non-programmers is a reference to the new technologies of personal 

computing. Certainly, these work to the benefit of non-programming managers, but by 

1990, a market exists for both home computers and packaged software to run on them. 

Cox’s readership, in IEEE, is more likely to be the professional programming community 

than its managers, unless those managers are themselves former programmers. The 

evidence is ambiguous; it definitely supports Ensmenger’s argument in that consumers 

are most likely to be imagined as “corporate customers,” but on the other hand the 

audience is not managerial. In a fascinating turn, Cox’s concern for “consumers” led him 

into a consideration of social construction:  

Lakoff and other authors in the collection that follows show why this 

approach fails as soon as objects leave the hands of their producer and 

encounter consumers with other views of the world. Categories (i.e. 

classes) cannot be invarients [sic] determined statically by the producer. 

They are determined (or better, must be determined once software 

engineering gets its poop in a group) by the consumer’s worldview and 

culture.
46
 

Histories of OO Languages, and the Static versus Dynamic controversy 

Standard histories of software are often told as the development of increasing 

levels of abstraction and complexity, highlighting the shift from assembly level 
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programming to the adoption of higher level programming languages such as 

FORTRAN, COBOL, and C.
47
 If oversimplified, the narrative becomes a teleological one 

where initial resistance by programmers preferring assembly gives way to adoption of the 

technologically “superior” solution of higher abstraction. A closer look reveals the 

persistence of schemes allowing programmers to circumvent such abstractions. As 

computer hardware understands only binary numbers (bits) and a few fundamental 

operations on them, the notion of software itself is based on hierarchical layers of 

abstraction that increase in complexity. For programmers, the higher the level of 

conceptual abstraction, the less control the programmer has over the hardware and what 

the computer actually has to do to execute the program, allowing programmers to 

construct more complex software at the cost of performance (less efficient use of the 

hardware in terms of speed of code execution by the CPU, or excessive memory usage). 

Many high level languages have been invented by academic computer scientists primarily 

concerned with mathematical theory, often with access to large mainframes or powerful 

workstations, resulting in languages with very high levels of conceptual abstraction. 

Working programmers must usually face the constraints of programming for the 

hardware limits faced by corporate customers and consumers, often using personal 

computers, which places priority on performance and efficiency. Indeed, the early high 

level, compiled languages faced resistance from working programmers who preferred 

hand-coding in assembly for precisely this reason. Thus, industrial or corporate designers 

of languages, faced with different concerns and constraints, have often arrived at designs 

                                                 
47
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that, from an academic perspective, “compromise” theoretical abstractions with 

practicality, allowing programmers some access to functionality closer to assembly 

language. Ironically, however, many of the technical responses to the software crisis, 

including the development of structured programming and object-oriented programming 

languages, are impositions of higher levels of abstractions that try to discipline 

programmers away from low level manipulation of the hardware, because it was 

precisely this low level manipulation that made programming a “black art” requiring high 

skill and creativity. Even with these new technologies, programmers could circumvent 

them if they wanted, and the programming community itself began to see a need to 

discipline programmers away from such harmful practices; structured and object-oriented 

methodologies could not merely be enforced by the language but had to be taught as a 

way of thinking.
48
 The following section illustrates the trade-off and continuing tension 

between higher and lower levels of abstraction through a consideration of the history of 

two object-oriented programming languages, Smalltalk (and one of its conceptual heirs, 

Objective-C), and C++. 

In order to understand the design choices involved, a brief technical overview of 

object-oriented programming is in necessary. (The following is based on explanations 

given in Pitfalls of Object-Oriented Development and an Apple updated version of an old 

                                                 
48
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NeXT Objective-C language reference.)
49
 Procedural programming languages such as 

FORTRAN, COBOL, Pascal and C, which were the most widely used type of high-level 

languages, especially in industry prior to object-oriented languages, separate data and 

operations on data. Operations in such languages are usually known as procedures or 

functions. Object-oriented languages group data (state) together with the operations that 

act on it (behavior) into a single modular unit called an object. An object’s data is known 

as its instance variables (or data members in C++) and the functions that operate on it are 

known as methods (or member functions in C++). In such languages such as Smalltalk 

and Objective-C, objects are seen as actors, which send messages to other objects, telling 

them to perform the actions (invoke the methods) specified by the message. The sending 

object has no idea how the receiver implements the behavior asked for. The black-boxing 

of an object’s internal implementation from its interface to the outside world is a 

fundamental feature of object-oriented programming known as “encapsulation” or 

“information hiding.” This creates a barrier between an object’s data and external entities 

that might try to modify it without permission, enforcing its modularity and thus 

reusability. Both instance variables and method implementations are usually protected in 

this manner. Interfaces and implementations are defined in an object’s “class.” Individual 

objects are all instances of the same kind of object, its “class.” A class is a template for a 

kind of object. Many individual objects of a class can be created, or “instantiated” and 
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different data values can be assigned to each object’s instance variables. A class is a data 

type like Integer or Array, but custom defined by the programmer.
50
 

All fully object-oriented languages feature “polymorphism.” Objects of different 

classes may have methods with the same names, such as “draw.” This allows a message 

sender to tell an arbitrary object to simply draw without knowing in advance what class 

of object it is receiving the message. Each class capable of responding to the message 

“draw” has its own method implementation of the action to be performed. This 

implementation can be radically different; an example is that a circle class and a square 

class would draw themselves differently. The abstraction of polymorphism helps enforce 

the modularity and flexibility of programs by not requiring senders to know in advance 

all the possible actions all possible receivers should implement. 

Finally, all object-oriented languages feature “inheritance.” New class definitions 

can be based on previously defined classes, called superclasses, parent classes, or base 

classes in C++. The inheriting class is called a subclass, child class, or derived class in 

C++, and inherits all of its parent’s instance variables and methods. It can define 

additional instance variables and methods that the superclass did not have, and it can 

override its parent’s implementation of specific methods by redefining them. For 

example, a square class can inherit from a rectangle class and redefine its draw method. 

In this sense whole trees or hierarchies of super and subclasses are created, with the 

classes at the root of the tree the most abstract. Some object-oriented languages such as 

C++ have multiple inheritance, allowing a class to derive from multiple superclasses. 

Objective-C and Java have only single inheritance in the strict sense, but allow 
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inheritance of method implementations (but not instance variables) from multiple 

superclasses through features such as “protocols” and “categories” in Obj-C and 

“extensions” in Java. 

All languages considered fully object-oriented feature encapsulation, 

polymorphism, and inheritance. However, there is a general differentiation between static 

languages such as C++, and dynamic languages, which include Smalltalk, Objective-C, 

Ruby and Python. Dynamism essentially means not locking in certain decisions in the 

program at compile and link time (when the programmer tells the computer to translate 

the source code to an actual running program),
51
 but dynamically at runtime in order to 

respond to user input or changes in the environment. There are multiple forms of 

dynamism, but for our purposes it is only important to understand dynamic typing and 

dynamic binding, which are closely related but often confused with each other. Static 

typing requires the programmer to set the type of an object in advance, which has the 

advantage of allowing the compiler to catch type errors for the programmer and do some 

performance optimizations. Dynamic typing means that the object’s type is not decided 

until the point during program execution when it becomes necessary to know, which 

usually requires a generic type that can stand for any class. What might be considered an 
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error for a statically typed language is fully legal in a dynamic language and can be 

exploited to do things that would be difficult to accomplish in a statically typed language. 

Static binding requires the compiler to bind the specific method that will get invoked 

after a message is sent to an object when the program is compiled, which again, has both 

reliability and performance advantages, while dynamic binding delays this decision until 

runtime, requiring the runtime system to dynamically dispatch the message to an object 

which can properly receive it, requiring additional overhead.
52
 The benefit of this 

overhead is additional flexibility. Apple’s Objective-C reference polemically argues that 

full polymorphism requires the use of both dynamic typing and binding, which becomes 

crippled if only one or neither are used.
53
 Dynamic binding is sometimes called late-

binding, including by Alan Kay, although Apple’s reference argues that late-binding 

refers only to a compromise measure to achieve polymorphism in statically typed 

languages such as C++. In C++, an object’s type, though static, can be inexact: it can be 

of its own class or any superclass it inherits from. However, because of this, the compiler 

cannot know which version of a method to bind because it does not know the class of the 

message’s receiver. If a method in C++ is declared “virtual,” this decision is postponed 
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until the program is linked, though not all the way till runtime, which means that user 

actions cannot influence this decision. 

Most of these metaphors and terminology are from Alan Kay’s Smalltalk, 

considered the first fully object-oriented language. A comparative examination of the 

historical development of these Smalltalk and C++ will reveal very different priorities 

and assumptions that have consequences in their designs. Brad Cox’s hybrid Objective-C 

language is basically a reimplementation of Smalltalk concepts on top of the procedural 

language C, and thus, being a direct intellectual descendant, is more similar to Smalltalk 

than it is to C++, despite both hybrid languages sharing the same C base. Cox’s 

overarching concern for shifting the balance of power towards the “user” and the 

“consumer” is also similar to Alan Kay’s goals in designing Smalltalk. Kay does not fit 

Ensmenger’s profile as a designer who worked for corporate or management interests. 

Before joining Xerox PARC, Kay’s had come straight out of academia, working on 

ARPA projects at Utah under Ivan Sutherland. The team at Xerox PARC was composed 

largely of either former members of Doug Engelbart’s human augmentation group at 

Stanford Research Institute (SRI) or Utah graduates who specialized in graphics. PARC, 

although being a corporate R&D lab, was much closer to the academic environments that 

Kay had been accustomed to, and indeed, Kay describes the constant conflicts they had 

with Xerox’s corporate headquarters.
54
 His design of Smalltalk both incorporates and 

reacts against features of LISP, the functional language used at Stanford’s AI lab 

(SAIL).
55
 Moreover, Kay’s overarching concern is with his vision of “personal 
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computing” based on Engelbart’s notion of “human augmentation.”
56
 Kay’s ultimate goal 

is to design a computer for children, a “KiddiKomp,” and the name “Smalltalk” reflects 

that.
57
 The influence of Seymour Papert’s LOGO, a language designed for learning in 

children, is also mentioned several times.
58
 Kay’s intended users for Smalltalk (despite 

his failure at actually getting them used by children), are decidedly not corporate 

managers. Nevertheless, in creating not just a language but whole new approach in 

programming, Kay created a system that was much closer conceptually to modeling the 

kinds of problems ordinary users might want their applications to solve than the lower 

level procedural languages. Such a system might make the system easier to program for 

anybody, be that person a corporate manager or a child.  

While Kay had the luxury of remaining in an almost academic research 

environment, Bjarne Stroustrup, developing C++ at Bell Labs, was concerned primarily 

with the needs of the working programmer. In describing his design goals for C++, he 

revealed that it did not involve innovation, but focused on efficiency and flexibility.
59
 As 

Stroustrup was concerned primarily with the languages’ acceptance in the industry, and 

its utility for low-level systems programming which required fast-executing code, he did 

not consider his primary competition to be other object-oriented languages but plain C, a 

language whose high industry acceptance was seen to be in part because of its access to 

lower levels of the machine, allowing for programs that could approach the speed of 

handwritten assembly code. For C++ to succeed, it not only needed to maintain a 

significant amount of compatibility with C, but it had to generate code that ran as fast as 

                                                 
56
 Ibid., 7. 

57
 Ibid., 14. 

58
 Ibid., 10. 

59
 Stroustrup, “A history of C++,” 1. 



 24 

C, just as C’s success was in part due to its success at generating code competitive with 

assembly languages. Any language features that might compromise this goal were 

omitted from C++. Stroustrup’s overarching concern with practicality and widespread 

adoption in the context of C’s market dominance explains C++’s popularity today among 

the vast majority of working programmers. It also explains, however, some of the 

criticisms that users of object-oriented languages such as Smalltalk and Objective-C have 

of C++. Stroustrup reveals that initially C++ began as merely an attempt to add “abstract 

data classes,” to C, which would improve code structure. Stroustrup saw the class 

hierarchy, or inheritance, as the only necessary feature for a language to be considered 

“object-oriented.”
60
 Features necessary to support polymorphism, especially late binding, 

were added incrementally over time: virtual functions in 1984’s first release of C++, 

abstract classes in 1986’s 2.0, parameterized types in the form of templates not until 

1988.
61
 Stroustrup’s concern with efficiency led him to emphasize strong, static 

(compile-time) typing. While he acknowledged some of the flexibility advantages of 

dynamic typing at runtime (acknowledging that it has “deep implications for the way one 

designs systems”),
62
 the need to keep execution fast, as well as to help the programmer 

avoid type related errors, led to a consistent commitment to static typing. This meant that 

rather than being designed in from the beginning, features conducive to dynamic-style 

programming were added incrementally, and added to the complexity of the language. 

Contrast this with Kay, who considers dynamic binding to be the fundamental feature of 
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object-oriented programming: “OOP is a late binding strategy for many things…”
63
 

“OOP can be viewed as a comprehensive technique for late-binding as many things as 

possible…”
64
 

Why is this rather technical discussion on the debate between “static” versus 

“dynamic” typing and binding interesting? Both C++ and Objective-C are hybrid 

languages, object-oriented extensions built on top of the low level, procedural language 

C. This allowed programmers the flexibility to both work at higher levels of conceptual 

abstraction while also being able to “go down to C” when necessary for performance 

reasons. Both Stroustrup and Cox claimed that they got the best of both worlds with their 

hybrids,
65
 but they differed on a fundamental design choice: C++ prefers static typing and 

only “late,” link-time binding,
66
 while Objective-C prefers dynamic typing and binding at 

runtime. Cox’s notion of the right trade-off to make between static and dynamic binding 
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was based on what level the software corresponded to on a hardware manufacturing 

metaphor. The hardware community’s industrialized advantages needed to be emulated 

by making software components interchangeable parts. At a certain level, dynamic 

binding was critical to this goal. “The hardware community's monumental achievements 

are largely due to the division of labor made possible by the loosely coupled 

modularity/binding technologies shown in this figure. Card-level pluggability lets users 

plug off-the-shelf cards to build custom hardware solutions without having to understand 

soldering irons and silicon chips. (Pluggability is the ability to bind a component into a 

new environment dynamically, when the component is used, rather than statically, when 

it is produced.)”
67
 This was critical to Cox’s project of making software serve the end-

user by making it flexible, rather than Stroustrup’s concern with programmer acceptance 

through code speed. For Cox, if a programmer needed to trade off user flexibility for 

speed, Objective-C made this possible by simply including all of C as part of the 

language. Cox considered this to be the strength of his hybrid approach, but because the 

Smalltalk-like syntax of the object-oriented portions of the language and the procedural C 

portions were completely orthogonal to each other, switching between levels of 

abstraction in the hierarchy became very explicit. C++’s approach was much more 

incremental–object-oriented concepts accrued in the language slowly over time, and the 

syntax deliberately was made to not be a radical break from procedural C. While this 

made the new OOP concepts easier to digest for procedural C programmers, Objective-C 

advocates could argue that this meant that most C++ programmers did not truly 

understand what the OOP approach was really about, especially if they agreed with Alan 
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Kay that late-binding was critical to it.
68
 Cox believed that the OOP community’s support 

of strong typing (even in dynamically bound languages such as Java) favored software 

producers and not consumers: “I'd noticed breakdowns in the way inheritance and strong 

type-checking are viewed by the object-oriented programming language community. This 

community's established paradigm is that an object's ‘class,’ its ‘category’ acc'd [sic] 

Lakoff, should be determined by the object’s producer in pursuit of implementation (how 

to build it) [sic] concerns, without regard to the objects use, its users, or the consumer's 

notions of what the object is ‘for’.”
69
 

The controversy between dynamic versus static language advocates has a specific 

resonance with the Macintosh programming community. Apple’s classic Macintosh 

platform, from 1984 to 2000, was based on a procedural applications programmer 

interface (API) known as the Macintosh Toolbox, originally allowing third party 

developers access through Pascal but later C and C++. In 1997, Apple acquired NeXT, 
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whose Unix-based operating system, NeXTStep, became the basis of Mac OS X, the 

replacement for the classic Mac OS. NeXTStep’s developer API was object-oriented and 

based on Objective-C, which NeXT had purchased from Brad Cox’s Stepstone in the 

mid-1990s.
70
 A small but passionate community of NeXT programmers, convinced of the 

technological superiority of dynamic object-oriented programming, grew up around the 

NeXTStep technologies through its various incarnations. After the Apple acquisition, the 

NeXTStep “framework” (an object-oriented API and set of shared libraries) was renamed 

“Cocoa.”
 71
  However, in order to facilitate the transition to its new operating system for 

its third party developers, particularly its large corporate developers Adobe and 

Microsoft, Apple decided to create a version of its venerable procedural API, the Mac 

Toolbox, that would be “native” to Mac OS X, and renamed it, “Carbon.” Developers for 

Mac OS X were given a choice between programming for Cocoa using Objective-C or 

programming for Carbon using C or C++, and this largely mapped onto a historical social 

division among developers. Carbon developers were usually longtime Macintosh 

developers with legacy code-bases rooted in the classic Mac OS, often large corporate 

developers such as Adobe. Cocoa developers were often old NeXT developers who had 

been with that platform through the 1990s, or possibly were developers new to the Mac 

and had little or no legacy code. Many of these Cocoa developers were “independent” 

developers or “indies,” individuals or small entrepreneurial ventures formed by the 

developers themselves. In the first half of this decade, Apple’s official line to its 

developers was that Carbon and Cocoa were peers with neither one given preference over 
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the other, and that Carbon would be supported indefinitely. In 2006, however, Apple 

announced that it was not going forward with a 64-bit version of Carbon in the next 

version of Mac OS X, which signaled to developers that Carbon’s future was numbered. 

The reaction from the Carbon community was extremely hostile, inciting a highly 

polemical debate over the technical merits of Cocoa and Carbon between its partisans.
72
 

Apple’s refusal to reconsider this decision over the last three years has led to some 

grudging closure within the Mac community, but resistance to Objective-C continues in 

other forms, with some developers claiming it is “ugly,” and a “failed experiment,”
73
 and 

others asserting it has a “steep learning curve.”
74
 

Conclusion and Future directions 

This paper represents a first exploration into ideas for a dissertation that contains 

a mishmash of various ideas and projects, which are not as well-connected as they ought 

to be. In fact, this could very well be two separate papers, and in the future might 

possibly be separated. Presenting them here together, however, allows us to consider the 

connections between these topics, which, although loose, are there. Mahoney and 

Ensmenger present the literature on the software crisis, and I agree with them that the 

crisis was in part a discursive construction by middle managers to regain a measure of 

                                                 
72
 Daniel Jalkut, “Red Sweater Blog - The Cocoa-Carbon Advantage,” blog, Red Sweater 

Blog, September 7, 2006, http://www.red-sweater.com/blog/181/the-cocoa-carbon-

advantage; John Gruber, “Daring Fireball: Some Assembly Required,” blog, Daring 

Fireball, October 5, 2006, http://daringfireball.net/2006/10/some_assembly_required; 

Scott Stevenson, “Theocacao: Some Explanation Required, Cocoa and Carbon,” blog, 

Theocacao, October 6, 2006, http://theocacao.com/document.page/314 
73
 Mike Fulton, “Objective C - A Failed Experiment,” blog, Mike Fulton Says…, April 

29, 2009, http://www.mikefulton.net/2009/04/29/objective-c-a-failed-experiment/ 
74
 Charles Babcock, “Startup's iPhone SDK Steers Clear Of Apple's Objective-C,” 

InformationWeek, June 24, 2009, 

http://www.informationweek.com/news/personal_tech/iphone/showArticle.jhtml?articleI

D=218100982 



 30 

control over a workforce that was increasing in bargaining power due to its monopoly 

over expertise. However, although they discuss object-oriented methods and technologies 

in this light, evidence from the second section points to a more complicated, and not 

completely clear, picture. The history of Smalltalk and C++ indicates that, from the 

perspective of the men who created the technology itself, their concerns were not exactly 

those of management. Furthermore, one would expect managers to favor such 

technologies that were more abstract and aid in the management of complexity, but the 

dominance of C++ over languages with full dynamic typing and binding shows that 

practical concerns of performance and efficiency, as well as not requiring newcomers to 

fully “paradigm-shift” into object-oriented methodology, proved more salient to industry-

wide acceptance.  

Furthermore, ethnographic research at an iPhone startup company that I 

undertook in 2008 showed that certain communities of programmers can be more militant 

about object-oriented principles and technologies than their managers, who care more 

about business priorities such as how much industry acceptance a particular language has 

and its proven track record, which might trump the marginal technical or managerial 

benefits of using a superior but more obscure language. In my case study, Cocoa 

programmers at the company pushed a stricter, more dynamic object-oriented language 

(Objective-C) for running their servers, over the objections of management, who 

preferred to use the industry standard, PHP, despite arguments that Objective-C would 

have lower costs and faster time to market. Business managers may be concerned with 

how a technology fits in with the larger socio-technical systems their particular product 

must interface with rather than specific technological benefits, especially if the alternative 
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is seen as “good enough.” But what still seems paradoxical is why Cocoa programmers 

advocate Objective-C in the first place if such a technology was originally created to 

discipline and their work? There are some possible explanations. First, although object-

oriented programming disciplines a programmer, such discipline is seen as beneficial to 

the programmer to avoid bad habits, ultimately freeing the programmer from tedious 

debugging and allowing for more creative, artistic work to take place. Second, our 

examination of Alan Kay’s motivations in creating Smalltalk suggests an ideological 

component to advocacy of object-orientation. Kay’s project was part of a larger “personal 

computing” movement associated with the 1960’s counterculture and with Doug 

Engelbart’s human augmentation project. Through Stewart Brand’s Whole Earth 

Catalog, a countercultural re-appropriation of cybernetics and small-scale digital 

calculators as tools not for military-industrial-bureaucratic control but for personal 

liberation and transcendence through information mastery lived on in the personal 

computing movement, replacing LSD with PCs as mind expanding tools.
75
 Two key 

features of the Smalltalk system, the graphical user interface and object-oriented 

programming, both were intended to bring computing power to the masses. Seen in this 

light, advocacy of dynamic object-oriented programming, and Cocoa in particular, is an 

ideological project of conversion. 

Significant future work needs to be done. Much of the literature on engineering-

management relations complicates the picture set out here. Noble (1985) presents 

engineers as agents for managers trying to use computer technology to deskill workers, 

while Oldenziel (1999) presents them as ambiguous figures, carving professional 
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identities vacillating between the masculinity of the shopfloor and the genteel qualities of 

the academic scientist and or white collar manager, with the lower echelons often reduced 

to routine calculation and only the higher levels achieving the promise of joining the 

ranks of management. The history of object-orientation, both as a set of technological 

artifacts in the form of languages, environments, and tools, and as a set of design 

methodologies, practices, and knowledge, needs to be explored further. Further analysis 

of Pitfalls of Object-Oriented Development (Webster 1995)
76
 needs to be done to 

examine the arguments for “best practices” separating “pure” object-oriented designs 

from those which compromise the model, and exactly what kind of efficacy is achieved 

through discipline. Another influential book in OO design is Gamma, et. al., 1995, 

Design Patterns: Elements of Reusable Object-Oriented Software,
 77
 which Webster 

claims is a “must-have.”
78
 Gamma et. al., offers still higher levels of abstractions as a 

toolkit for designers, which became heavily incorporated into Apple’s Cocoa 

frameworks. Whole chapters could be written on the development of Smalltalk, C++, 

Objective-C, and other languages with access to primary sources. More in-depth analysis 

of Brooks’ Mythical Man-Month, and of Brad Cox’s “Silver Bullet” arguments, as well 

as other literature on software engineering, would flesh out the paper. Lastly, significant 

additional ethnographic data has been gathered on other companies, allowing for more 

comparison of management-engineering relations. This work can be multiple papers in its 

own right. 
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I began this paper by quoting Michael Mahoney, and it is fitting that to him I 

return. Mahoney said, “the history of software is hard,” precisely because ultimately it is 

the history of human beings and how they mentally model the world. I do not know how 

closely I have followed this in this paper, especially in the more technical sections, but if 

I have failed, it is because the history of software is indeed hard. Yet I hope that at least 

on an abstract level, the spirit of Mahoney has guided me in this paper, and will continue 

to guide me in future endeavors.  
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